Extracellular glycation crosslinks: prospects for removal.
نویسنده
چکیده
Extracellular aging--accumulating molecular damage by glycation, oxidation, and crosslinking of long-lived extracellular proteins, mainly collagen and elastin--is a major cause of several important human aging pathologies. Crosslinking increases mechanical stiffness of blood vessels and urinary bladder. Crosslinking impairs the functioning of the kidney, heart, retina, and other tissues and organs. Glycation adducts trigger inflammatory signaling, provoking tissue damage and cancers. Crosslinking tightens up the extracellular matrix (ECM), hardening it against natural turnover processes. Known crosslink breakers (e.g., alagebrium, of the thiazolium halide family) are only partly effective because they break only a subset of AGE crosslink structures (sugar-derived alpha-diketone bridges). So far, no agent has been found that breaks the prevalent glucosepane and K2P crosslink structures. Enzymes that would be able to recognize and disassemble glycation products may be too big to migrate into the ECM and repair collagen or elastin in vivo. Two approaches to therapy development are presented here. ECM turnover enhancement would enhance natural processes to digest old ECM and replace it with new. It will be important to tune the collagen degradation to a rate slow enough to prevent dire side-effects, such as hemorrhage from leaky blood vessels as collagen molecules are removed and replaced. Glycation breaker discovery would use high-throughput screening and rational drug design to find molecules that are able to break glucosepane crosslinks and K2P crosslinks of extracellular proteins. Candidates would be further screened for selectivity and toxicity in order to avoid damage to other molecules.
منابع مشابه
Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility
Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution...
متن کاملIn situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cc06624d
Non-enzymatic glycation of extracellular matrix with (U-13C5)-d-ribose-5-phosphate (R5P), enables in situ 2D ssNMR identification of many deleterious protein modifications and crosslinks, including previously unreported oxalamido and hemiaminal (CH3-CH(OH)NHR) substructures. Changes in charged residue proportions and distribution may be as important as crosslinking in provoking and understandin...
متن کامل[Glycation of extracellular matrix proteins and its role in atherosclerosis].
Glycation consists in formation of advanced glycation end-products (AGE) during non-enzymatic reaction between reducing sugars and proteins, lipids or nucleic acids. This review is focused mainly on glycation of collagen and its role in acceleration of vascular disease. Collagen is an extracellular matrix protein characterized by unique structure forming fibrils with great anti-tensile and anti...
متن کاملThe role of collagen crosslinks in ageing and diabetes - the good, the bad, and the ugly.
The non-enzymatic reaction of proteins with glucose (glycation) is a topic of rapidly growing importance in human health and medicine. There is increasing evidence that this reaction plays a central role in ageing and disease of connective tissues. Of particular interest are changes in type-I collagens, long-lived proteins that form the mechanical backbone of connective tissues in nearly every ...
متن کاملTherapeutic potential of breakers of advanced glycation end product-protein crosslinks.
Long-lived structural proteins, collagen and elastin, undergo continual non-enzymatic crosslinking during aging and in diabetic individuals. This abnormal protein crosslinking is mediated by advanced glycation end products (AGEs) generated by non-enzymatic glycosylation of proteins by glucose. The AGE-derived protein crosslinking of structural proteins contributes to the complications of long-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Rejuvenation research
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2006